Exchange matrix

In mathematics, especially linear algebra, the exchange matrix is a special case of a permutation matrix, where the 1 elements reside on the counterdiagonal and all other elements are zero. In other words, it is a 'row-reversed' or 'column-reversed' version of the identity matrix.


J_{2}=\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix};\quad J_{3}=\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix};
\quad J_{n}=\begin{pmatrix}
  0      & 0      & \cdots & 0      & 0      & 1      \\
  0      & 0      & \cdots & 0      & 1      & 0      \\
  0      & 0      & \cdots & 1      & 0      & 0      \\
  \vdots & \vdots &        & \vdots & \vdots & \vdots \\ 
  0      & 1      & \cdots & 0      & 0      & 0      \\
  1      & 0      & \cdots & 0      & 0      & 0      
\end{pmatrix}.

Definition

If J is an n×n exchange matrix, then the elements of J are defined such that:

J_{i,j} = \begin{cases} 
1, & j = n - i %2B 1 \\
0, & j \ne n - i %2B 1\\
\end{cases}

Properties

Relationships